Beam Halo Formation in High-Current Proton Beams

P. L. Colestock

T. P. Wangler

M. E. Schulze

and the LEDA Experimental Team.

Halo Experiment Scientific Team

P.Colestock

and the LEDA Operations Team

J.D.Gilpatrick

D. Williams

M.E.Schulze

D. Manders

H.V.Smith

D. Kerstiens

T.P.Wangler

C.K.Allen

K.C.D.Chan

K.R.Crandall

R.W.Garnett

W.Lysenko

J.Qiang

J.D.Schneider

R.Sheffield

Early History of Beam Halo

- Beam loss was associated with existence of beam halo in LAMPF linac in 1970s.
- Beam halo was detected at end of LAMPF linac in 1975 (H. Koziol).
- Beam halo remained a mystery for almost 2 more decades.
- 100-mA CW Accelerator Production of Tritium (APT) project in 1990s provided motivation to understand beam halo and beam losses.

Progress in understanding beam halo during past decade

- Theoretical framework for halo in linacs was developed from:
 - a particle-core model.
 - computer simulation.
- But no experiments had been done until the halo experiment on LEDA was carried out last year.
- Motivation for halo experiment was to test:
 - understanding of the physics.
 - the predictive capability of simulation codes.

Particle-Core Model

- Mismatch of forces within beam excites collective beam modes driving transverse oscillations of core.
- Space-charge of oscillating core can drive particles in parametric resonance when f_{particle} = f mode/2.
- Typically the particle amplitudes can grow to 6 or 7 rms beam widths over 30 to 40 modeoscillation periods.
- Details of the beam dynamics require computer simulation.

Envelope Modes of Mismatched Bunched Beams

Stroboscopic Phase Space Plot Particle-Core Model - Spherical Bunch - Breathing Mode

Parametric Resonance in Sphere Particle-Core Model

Computer simulations showed halo is formed in mismatched beams.

Rms mismatched beam (on right) develops larger amplitudes than rms matched beam (on left).

Beam-halo experiment designed to test our understanding.

- Pulsed beam from 6.7-MeV LEDA RFQ into 52 quadrupole transport line. First four quadrupoles create mismatches.
- 10 breathing-mode oscillations, enough to see initial stages of emittance growth caused by resonant halo-formation mechanism.
- Vary mismatch and current. Measure beam profiles to obtain: 1) rms emittances, 2) maximum detectable amplitudes.

Beam-halo experiment

52 quad -11m beam channel after LEDA RFQ

Implementation of the Experiment.

- Measurements between February and September,
 2001 -- Six mismatch settings at 15, 50, 75, and
 100 mA.
- New sensitive beam diagnostics gave excellent performance. Details of beam profiles never seen before.
- Beam matching and mismatch procedures worked as designed.
- Analysis is now in progress.

New state-of-the-art beam-profile diagnostics were designed and built for the halo experiment. (J.D.Gilpatrick, et al.)

- Three components mounted on common movable frame.
 - 33μ carbon wire to measure beam core.
 - Pair of graphite scraper plates for outer halo.
- Data from wire and scraper plates combined in computer software to produce single distribution with as much as 10⁵:1 dynamic intensity range.
- 9 measurement stations at which both horizontal and vertical profiles were measured.

Wire and halo scraper assembly of the beam-profile diagnostic (J.D.Gilpatrick, et al.)

What do we expect to see if the Particle-Core model is correct?

- Minimum emittance growth for matched beam.
- Emittance growth which increases with increasing mismatch.
- Emittance growth which increases along beam line.
- May see initial stages of growth in maximum detectable amplitude provided input beam is free of halo.

Results are confirming general expectations of Particle-Core Model.

- Measured emittances were minimum for matched beams as expected.
- Emittances increased with increasing mismatch as expected.
- Emittances increased with increasing distance along beam line as expected.
- Maximum beam extent close to simulated values

X-Plane Rms Normalized Emittance Versus Distance

Matched beam - 75 mA - scanner 51x

Mismatched beam (μ =1.5) - 75 mA - scanner 51x

Comparison of shape of measured profile (points) with simulation (curve) for mismatched case (μ =1.5) at scanner 51

RMS EMITTANCE AT SCANNER #20 - 75 mA - BREATHING MODE

RMS EMITTANCE GROWTH AT SCANNER #45 - 75 mA - BREATHING MODE

The experiment is also providing new and unexpected results.

- Maximum detectable amplitudes for matched beams are larger than we expected.
 - -suggests halo in input beam.
- Beam profiles for mismatched cases show unexpected shoulders.
 - -suggests nonlinear aberrations of unknown origins.
- Most realistic simulation so far (Young, Qiang), beginning at ion source, underestimates widths and shoulders.
 - Profiles from simulation are ~30% or more too narrow.
 - Beam sizes from simulation are ~30% or more too small.
 - Rms emittances from simulation are also too small.

RMS EMITTANCE GROWTH AT SCANNER #45 -75 mA - QUADRUPOLE MODE

RMS EMITTANCE GROWTH AT SCANNER #20 - 75 mA - QUADRUPOLE MODE

What do we conclude from an initial look at the rms emittance growth at 16, 75, and 100 mA?

- Consistent with minimal matched-beam emittance growth between the two scanner clusters as expected.
- Mismatch emittance growth generally increases with increasing mismatch (deviations of μ from 1) as expected.
- Mismatch emittance growth is larger at same or larger at final scanner cluster than at middle cluster as expected.
- Average of x and y emittance growth consistent with maximum allowed by free energy.
- Surprising: Rms emittance growth consistent with almost total transfer of free energy to emittance at all currents in just 10 oscillation cycles.

Conclusions

- The new beam-profile diagnostic has opened a new regime for observing beam halo to densities as low as 10⁻⁵ of the core density.
- Initial results show nearly complete free energy transfer to emittance growth in only 10 oscillation periods.
 The emittance growth mechanism is very effective.
- Rms emittance growth results are consistent with a very strong halo and emittance-growth mechanism that the resonant Particle-Core (2:1 resonance) Model provides, but no direct proof. (There is no alternative model at present.)
- Major challenge for simulation is to understand the input phase space distribution needed to explain the results.